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Abstract. In the dynamics analysis based on the electromagnetic biological 

fields propagation, the conservation of the surface element from phase space 

implies special temporal stochasticities. Then, the identification of temporal 

stochasticities in the phase space, meant to transform dissipative dynamics into 

non- dissipative dynamics, implies Riccati-type gauge at various scale 

resolutions, i.e. self-modulation of the Stoler type. 
 

Keywords: biostructure; operational procedure; Riccati gauge; self-

modulation. 

 
1. Introduction 

 

The electromagnetic biological field is vital in bio-structure dynamics. 

No matter the type of bio-structure (bacteria, virus, etc.), they are “specialized” 
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both in “generating” and “manipulating” biological currents: e.g. myocardial 

cells generate biological currents which allow the cardiac muscle to contract at 

the right time, any nervous system specific to any bio-structure uses biological 

currents in order to transmit signals along the entire bio-structure, making thus 

possible its dynamics. 

Moreover, the majority of bio-structure is polarizable and excitable, so 

that “action potentials” can be associated with their dynamics (“elementary 

bioelectric events” which are “sources” for all the bio-electromagnetic signals in 

bio-structures) (Grimnes and Martinsen, 2015; Malmivuo and Plonsey, 1995). 

In the present paper we propose a theoretical model for analyzing 

biostructures dynamics through various operational procedures (phase space 

analysis, stochastic analysis, etc.). 

 
2. Mathematical Model 

 

Let us admit that bio-structures are complex systems (Badii and Politi, 

1997; Mitchell, 2009) associated with fractals (Mandelbrot, 1983; Feder and 

Aharoner, 1990) and the electromagnetic biological field is responsible for bio-

structures dynamics through Maxwell-type equations (Grimnes and Martinsen, 

2015; Malmivuo and Plonsey, 1995). The type of bio-structure is introduced by 

means of electrical permittivity , magnetic permeability , and the electrical 

conductivity , all of these being dependent on scale resolution (Feder and 

Aharoner,1990; Nottale, 2011). In such a context, the behavior of bio-structures 

is controlled both by biological currents and by the electrical and magnetic 

components of the biological electromagnetic field. Because we propose to 

analyze only temporal dynamics of bio-structures, such behaviors are contained 

in the differential equation: 

 

𝜇𝜀
𝜕2𝑇(𝑡)

𝜕𝑡2
+ 𝜇𝜎

𝜕𝑇(𝑡)

𝜕𝑡
+ 𝛼2𝑇 𝑡 = 0 (1) 

 

where T(t) can be the temporal components either of the biological current or of 

the biological electromagnetic field, and 𝛼 > 0  is a variables separation 

constant which will be defined later on. 

Let us analyze Eq. (1) in the phase space, by means of substitutions: 

 

𝑄 𝑡 = 𝑇 𝑡 , 𝐴 = 𝜇𝜀, 2𝐵 = 𝜇𝜎, 𝐶 = 𝛼2                         (2) 

 

Then, Eq. (1) becomes: 
 

𝐴𝑄 + 2𝐵𝑄 + 𝐶𝑄 = 0                                          (3) 
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where Q is a variable with which we can describe the bio-structures dynamics, 

and A, B, C are real positive coefficients depend on scale resolution. The same 

equation can be written as a system: 

 

𝑃 = −
2𝐵

𝐴
𝑃 −

𝐶

𝐴
𝑄, 𝑄 = 𝑃 (4) 

      

The second equation from (4) can be a relevant moment-type variable, 

if and only if Q is a relevant coordinate-type variable for bio-structures 

dynamics in a phase space (P, Q). Accepting such a “theoretical construct”, the 

system (4) is not a Hamiltonian system, as would be expected when discussing 

about relevant coordinate and moment, because its matrix is not an involution 

(it does not have a null trace), (Arnold, 1989). This fact becomes obvious if the 

system is written in the form: 

 

 
𝑃 

𝑄 
 =  −

2𝐵

𝐴
−
𝐶

𝐴
1 0

  
𝑃
𝑄
  (5) 

 

As long as the physical parameters of the 22 matrix, i.e. A, B, C, are 

constant, the system can be rewritten in an equivalent form which highlights the 

energy status, and thus, the Hamiltonian status. Indeed, from Eq. (5) we can 

easily obtain the differential equation: 

 
𝐴

2
 𝑃𝑄 − 𝑄𝑃  = −

1

2
 𝐴𝑃2 + 2𝐵𝑃𝑄 + 𝐶𝑄2  (6) 

 
which proves that the energy, i.e. the quadratic form from the right side of Eq. 

(6), is the variation  rate of the physical action represented by the elementary 

surface from the (P, Q) phase space (Arnold, 1989). Eq. (6) is a Riccati-type 

equation for a certain variable, be it 𝑤 = 𝑃/𝑄, so that it can be written as: 

 

𝐴𝑤 + 𝐴𝑤2 + 2𝐵𝑤 + 𝐶 = 0 (7) 

 

It is not necessary to find a direct physical meaning for w, at least for 

now. We must note though that the solution of Eq. (7) is given by the ratio of 

the Hamiltonian system
’
s (5) solutions, i.e. 

 

 
𝑃 

𝑄 
 =  

−
𝐵

𝐴
−
𝐶

𝐴

1
𝐵

𝐴

  
𝑃
𝑄
  (8) 
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This is a generic trait of relations between Riccati
’
s equations and 

Hamiltonian dynamics (Zelkin, 2001). We can go back to Eq. (6) and introduce 

the 1-form differential from (8) which characterizes the elementary surface from 

the phase space. Regarding Eq. (7), it can be integrated in order to specify that 

the energy is no longer conserved, and a conservation law exists for the quantity 

(Denman, 1968): 
 

 𝐹 𝑃, 𝑄 =  

=
1

2
 𝐴𝑃2 + 2𝐵𝑃𝑄 + 𝐶𝑄2  𝑒𝑥𝑝  

2𝐵

 𝐴𝐶 − 𝐵2
 tan−1  

𝐴𝑃 + 𝐵𝑄

𝑄 𝐴𝐶 − 𝐵2
  =

= 𝑐𝑜𝑛𝑠𝑡. 

(9) 

 

It can be observed that the energy is conserved, in a classical sense, if 

only if either the B coefficient is null, or the phase plane motion takes place along 

a line passing through the origin, with its slope determined by the B/A ratio. 

Written as: 
 

𝐶𝑄2

2
=

𝑐𝑜𝑛𝑠𝑡.

 1 + 2𝑟𝑤 + 𝑤2 
𝑒𝑥𝑝  2

𝑟

 1 − 𝑟2
tan−1  

𝑤 1 − 𝑟2

1 − 𝑟𝑤
   (10) 

    

with notations: 

𝑤2 =
𝐴𝑃2

𝐶𝑄2
 , 𝑟2 =

𝐵

𝐴𝐶
 (11) 

 

Eq. (9) shows a striking resemblance with the distribution function over 

a statistical ensemble of local oscillators, given by relation (Lavenda, 1992): 
 

𝑃 𝑤, 𝑟 = 𝑒𝑥𝑝 −𝛽𝜀0 = 

               =
1

 1 + 2𝑟𝑤 + 𝑤2 
 𝑒𝑥𝑝  2

𝑟

 1 − 𝑟2
 tan−1  

𝑤 1 − 𝑟2

1 − 𝑟𝑤
   

(12) 

   

with 

𝑤 =
𝜀0

𝑢
 (13) 

 

0 the energy quantum, u is the reference energy, r the correlation coefficient 

and  is the Boltzmann’s factor. Thus, it results that the potential energy 

effectively depends on the ratio between the kinetic energy and the potential 

energy and that this ratio is a statistical variable through which the two energies 

can be determined. 

The present theory highlights one of the most interesting properties of 

energy, in relation to the conservation law. The standard equation: 
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𝑄 + 2𝑤0
2𝑄 = 0 (14) 

 

with 

𝑤0
2 =

𝐶

𝐴
 (15) 

 

is a consequence of the stationary property of the mean of the difference 

between the kinetic energy and the potential energy along the entire bio-

structure dynamics. As known, the difference between the kinetic energy and 

the potential energy defines the dynamics Lagrangean, L, 

 

𝐿 =
𝐴𝑃2

2
−
𝐶𝑄2

2
 (16) 

 

The integral of this difference between two time moments, t1 and t2, 

defines the action S: 

 

𝑆 𝑡1 , 𝑡2 =   
𝐴𝑃2

2
−
𝐶𝑄2

2
 𝑑𝑡

𝑡2

𝑡1

 (17) 

 

which is thus proportional with the mean of the difference between the kinetic 

and the potential energy, for the bio-structure dynamic during the considered 

time interval. It can be thus stated that the bio-structure dynamics, described 

through Eq. (14), distribute the two types of energy in such away in which their 

mean along the entire duration of the dynamics is stationary. 

We cannot exactly apply the same reasoning for obtaining Eq. (3), but 

the above considerations leads us to statistical arguments which are not 

modified per se. Thus, for Eq. (3) it is not the time mean of the difference 

between the kinetic and potential energies which changes, but the time mean of 

the function: 

 

𝐿 𝑄, 𝑄 , 𝑡 =
1

2
 𝐴𝑄 2 − 𝐶𝑄2  𝑒𝑥𝑝  

2𝐵

𝐴
𝑡  (18) 

  

The action corresponding to such a situation takes place on a finite time 

interval given by the integral: 

 

𝑆 𝑡1 , 𝑡2 =   𝐴𝑄 2 − 𝐶𝑄2  𝑒𝑥𝑝  
2𝐵

𝐴
𝑡 𝑑𝑡

𝑡2

𝑡1

 (19) 
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Action (19) can be interpreted as the time mean of the difference 

between the kinetic energy and potential energies, for the a priori statistical 

measure of the time domain defined by an exponential distribution. In the case 

of Eq. (19) this distribution is uniform. Thus, it can be stated that, through the 

Hamiltonian theory of motion, the motion equations, given either by Eq. (3) or 

Eq. (14), are clear consequences of a temporal statistic. They are different only 

by the a priori mean of the time axis specific to the described dynamics. It is 

therefore to be expected that, in the more general case, the temporal statistic 

itself to change. 

But what would be the reason behind changing the temporal statistic? 

This becomes obvious if we take into account that the Lagrangean (18) has 

parameters A and C exponentially variable: 

 

𝐴 𝑡 → 𝐴 𝑒𝑥𝑝  
2𝐵

𝐴
𝑡 , 𝐶 𝑡 → 𝐶 𝑒𝑥𝑝  

2𝐵

𝐴
𝑡  (20) 

 

Therefore, the sum of the temporal statistic is given by the variability of 

the parameters A and C, which specifies that, from a physical point of view, the 

analyzed bio-structure is never isolated, but in a permanent interaction with the 

biological medium. 

The situation described by Lagrangean (18) is a totally particular case 

of a much more general situation, which imposed the idea of gauge (Riccati 

gauge). 

For this sense let us define a gauge in which Lagrangean (18) is a 

perfect square. This procedure is well known and frequently used in control 

theory (Zelkin, 2000). Now, the cyclicitycondition, becomes essential. It all 

resumes to adding to Lagrangean (18) the term: 

 
1

2

𝑑

𝑑𝑡
 𝑤 𝑒𝑥𝑝  

2𝐵

𝐴
𝑡 𝑄2  (21) 

 

where w is a continuous time function, requiring that the Lagrangean be a 

perfect square. The time interval variation of the function under the new 

derivation operator is null because of a special restriction (this bio-structure 

dynamics “begin” and “end” in the same point), therefore the dynamic Eq. (3) is 

not changed. 

The new Lagrangean, in 𝑄  and Q coordinates, becomes 

 

𝐿 𝑄, 𝑄 , 𝑡 =
1

2
𝐴 𝑒𝑥𝑝  

2𝐵

𝐴
𝑡  𝑄 +

𝑤

𝐴
𝑄 

2

 (22) 

 

with the condition that w satisfied the Riccati-type differential equation: 
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𝐴𝑤 − 𝑤2 + 2𝐵𝑤 + 𝐴𝐶 = 0 (23) 

 

With condition (23), Lagrangean (22) leads us to the same Eq. (3) as 

Lagrangean (18). As before, there is a connection between the Riccati –type Eq. 

(23) and the Hamiltonian dynamics. We find in this situation that the matrix 

system has the expression: 

 

 
𝜂 

𝜉 
 =  

−
𝐵

𝐴

𝐶

𝐴

−1
𝐵

𝐴

  
𝜂
𝜉  (24) 

 

with 

 

𝑤 =
𝜂

𝜉
 (25) 

 

which rigorously represents a Hamiltonian system. Therefore, variables  and  

must be identified with coordinates from the phase space. 

With regard to the solution of the Riccati-type Eq. (23), we must first 

notice that the roots of the polynomial 

 

𝑃 𝑤 = 𝑤2 − 2𝐵𝑤 − 𝐴𝐶 (26) 

 

can be written as: 

𝑤1 ≡ 𝐵 + 𝑖𝐴Ω, 𝑤2 ≡ 𝐵 − 𝑖𝐴Ω,   𝑤2 =
𝐶

𝐴
−  

𝐵

𝐴
 

2

 (27) 

    

 Performing the homographic transformation 

 

𝑧 =
𝑤 − 𝑤1

𝑤 −𝑤2
 (28) 

 

it results through direct calculus that z is a solution of the linear and 

homogenous first order equation 

 

𝑧 = 2𝑖𝜔𝑧 (29) 

 

which allows the solution 

 

𝑧 𝑡 = 𝑧(0)𝑒2𝑖𝜔𝑡  (30) 
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Therefore, if the initial condition z(0) is conveniently expressed, the 

general solution of Eq. (23) can be found, by writing transformation (28) as: 

 

𝑤 =
𝑤1 + 𝑟𝑒2𝑖𝜔(𝑡−𝑡𝑟)

1 + 𝑟𝑒2𝑖𝜔(𝑡−𝑡𝑟)
 (31) 

 

where r and tr are two real constants which characterize the solution. By using 

(27) we can write this solution in real terms, as 

 

𝑧 = 𝐵 + 𝐴𝜔 
2𝑟 sin 2𝜔 𝑡 − 𝑡𝑟  

1 + 𝑟2cos 2𝜔 𝑡 − 𝑡𝑟  
+ 𝑖

1 − 𝑟2

1 + 𝑟2cos 2𝜔 𝑡 − 𝑡𝑟  
  (32) 

     

which highlights a self-modulation of the pulsation-type characteristic  known 

as the Stoler transformation (Stoler, 1970; Stoler, 1971), implying a complex 

form for this parameter. In Fig. 1 we present this self-modulation phenomenon 

through Re(z) time dependences, for various values of r and . 

The dependences of Re(z) on r and  (3D and contour dependences) at 

various scale resolutions are shown in Fig. 2. 
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Fig. 1 ‒ Amplitude variation with time of the Re(z) solution 

for four different 

values of the (pulsation‒type) characteristic (10 and 15). 
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Fig. 2 ‒ 3D and 2D representation of the solution Re(z) at various 

scale resolution given by the maximum value of the (pulsation-type) characteristic 

(27 and 46). Self-modulation of the signal can be observed. 
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3. Conclusions 

 

The previous analysis specifies the fact that the temporal 

stochasticization meant to “transform” dissipative dynamics of a system into 

non-dissipative dynamics of the same system implies a Riccati-type “gauge” 

(the dynamic variables must satisfy a Riccati-type differential equation). The 

explicitation of such a situation can be found in a Stoler-type self-modulation 

(described by a Stoler transformation) of any signal. In other words, the 

temporal stochasticization processes of any bio-structure entities dynamics 

through Riccati-type gauge impose Stoler-type self-modulation of the signals 

which describe their dynamics. 
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AUTOMODULAREA ÎN STRUCTURILE BIOLOGICE 

 

(Rezumat) 

 

Analizele de dinamică bazate pe ecuaţiile de propagare ale compuşilor 

electromagnetici biologici arată că conservarea elementului de suprafaţă în spaţiul 

fazelor implică statistici temporale speciale. Într-un asemenea cadru, identificarea 

statisticilor temporale menite de a transforma dinamici disipative în dinamici 

nedisipative implică etalonări Riccati la diverse rezoluţii de scară. O asemenea situaţie 

se realizează prin automodulare de tip Stoler în frecvenţă. 

 


